Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.02.438292

ABSTRACT

In the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males compared with females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8-10 weeks of age) were inoculated intranasally with 105 TCID50 of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developing more extensive pneumonia as noted on chest computed tomography, and recovering more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including IFNb and TNFa, were comparable between the sexes. However, during the recovery phase of infection, females mounted two-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole inactivated SARS-CoV-2 and mutant S-RBDs, as well as virus neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2 associated sex differences seen in the human population.


Subject(s)
Coronavirus Infections , Lung Diseases , Protein S Deficiency , Pneumonia , Severe Acute Respiratory Syndrome , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.26.20139063

ABSTRACT

Convalescent plasma is currently one of the leading treatments for COVID-19, but there is a paucity of data identifying therapeutic efficacy. A comprehensive analysis of the antibody responses in potential plasma donors and an understanding of the clinical and demographic factors that drive variant antibody responses is needed. Among 126 potential convalescent plasma donors, the humoral immune response was evaluated by a SARS-CoV-2 virus neutralization assay using Vero-E6-TMPRSS2 cells, commercial IgG and IgA ELISA to Spike (S) protein S1 domain (Euroimmun), IgA, IgG and IgM indirect ELISAs to the full-length S or S-receptor binding domain (S-RBD), and an IgG avidity assay. Multiple linear regression and predictive models were utilized to assess the correlations between antibody responses with demographic and clinical characteristics. IgG titers were greater than either IgM or IgA for S1, full length S, and S-RBD in the overall population. Of the 126 plasma samples, 101 (80%) had detectable neutralizing titers. Using neutralization titer as the reference, the sensitivity of the IgG ELISAs ranged between 95-98%, but specificity was only 20-32%. Male sex, older age, and hospitalization with COVID-19 were all consistently associated with increased antibody responses across the serological assays. Neutralizing antibody titers were reduced over time in contrast to overall antibody responses. There was substantial heterogeneity in the antibody response among potential convalescent plasma donors, but sex, age and hospitalization emerged as factors that can be used to identify individuals with a high likelihood of having strong antiviral antibody levels.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL